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Abstract

A formalism based on plane wave decomposition is applied to the linear prop-

agation of terahertz pulses in experimental geometries. The approach is very

general and is not restricted to any particular polarization (or current) source.

Near and far field expressions easily amenable to numerical computation are

obtained for the temporal profiles and spectra of terahertz pulses in layered

structures, as often encountered in experiments. The effects of polarization

and angle-dependent multiple reflection and transmission, as well as material

dispersion, are included. Examples for optical rectification in GaAs and ZnTe

are presented to illustrate the simplicity of the method, and are compared with

experiments. The numerical evaluation of the expressions for the THz electric

field in practical experimental geometries is straightforward.
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1. Introduction

The temporal profile of an electromagnetic wave often carries important information about

the source that generated it. A description of the effects of propagation on the temporal

profile of such waves is often critical both in determining what information can be extracted

from the measurements of the temporal profile and in extracting it. For experiments with

simple boundary conditions1, the properties of the radiation can be studied analytically. In

more specialized applications, however, it is necessary to use approaches that allow some

approximations to be made in order to extend the reach of analytical methods. In optics,

for instance, one can use the paraxial wave equation to study the propagation of radiation

in free space, and thereby derive important analytical expressions for the beam properties2.

However, recent advances in the production of few-cycle ultrashort optical pulses3, and THz

pulses4–6 have allowed the creation of electromagnetic pulses that cannot be described by the

paraxial wave equation. These pulses are often used in situations where the phase of different

frequency components with respect to the envelope function is critical. Experimental tech-

niques have been developed to time-resolve the amplitude and phase of this radiation4,7,8.

It has been shown that the respective time signatures of this radiation in the near field and

far field are vastly different9–11. The full solution to Kirchoff’s diffraction integral has been

used to model some experiments and has yielded excellent agreement with experimental

data12. Yet the generalization of this formalism to more complicated geometries, including

interfaces, is not straightforward. And while solving Maxwell equations with finite-difference

techniques is always an option, doing so can be difficult to implement, particularly in three

dimensions13.

The goal of this paper is to introduce a practical method for calculating radiated fields

from any prescribed source, both in the near and far field, so that an easy comparison of
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predicted results with experimental data can be achieved. This method permits the extrac-

tion of important details about the dynamics of the source that generated the radiation14.

In this work, the propagation of broadband THz radiation in experimental situations is

modelled taking into consideration polarization-dependent effects at interfaces, multiple re-

flections, dispersion of the index of refraction, as well as near and far field pulse reshaping

effects. Sipe15 has shown that a plane wave decomposition of the field allows the descrip-

tion of the propagation both in the near and far field in terms of simple, intuitive Green

functions. The framework makes use of well-known results from linear optics (e.g., com-

plete frequency-dependent Fresnel transmission and reflection coefficients) and lends itself

nicely to an analysis of relatively complex geometries with multiple reflections and arbitrary

polarizations, as is the case in most practical studies.

The structure of this paper is as follows. In section 2, we build on earlier work15 and

introduce the formalism and notation. Next, in section 3, we describe the propagation of

radiation through vacuum, dielectric media, and lenses. The results are then used in section

4 to obtain the Green functions for different geometries and calculate the radiation from

an arbitrary polarization source. Finally, straightforward examples from realistic situations

both in the near and far field are worked out, the results of which can be directly used in

modelling most experimental situations.

2. Formalism

Plane waves and spherical waves are both eigenmodes of the Helmoltz equation. Therefore

any propagating electromagnetic field can be expressed as a superposition of either plane or

spherical waves. The key advantage in using plane waves over spherical waves is that the

description of transmission and reflection at interfaces takes a simple form, in that the ŝ- and

p̂-polarized components of the field can usually be treated independently. Expressions for
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the propagation through any layered media, using results from thin film optics, can then be

easily obtained. For these reasons, we employ a plane wave basis with polarization vectors ŝ

and p̂. Each plane wave is fully defined by four parameters: its frequency Ω, its wave vector

ν, its polarization vector (ŝ or p̂) and, finally, its complex amplitude. The wave vector ν is

further decomposed into two components: ±w (possibly complex) along the axial direction

ẑ, and K (always real) in the xy plane transverse to ẑ. The vector R = RR̂ = xx̂+yŷ spans

this transverse plane; the position vector in three dimensions is r = xx̂+ yŷ+ zẑ = R+ zẑ.

A plane wave distribution is denoted by the Fourier spectral density E (Ω,K). In an infinite

medium with no sources, the field resulting from the superposition of such plane waves that

together with the associated magnetic field, satisfies the Maxwell equations takes the form:

E(r, t) =

∫ ∞

0

dΩ

2π

∫

dK

(2π)2
E(Ω,K; z)eiK·Re−iΩt + c.c. (1)

where

E(Ω,K; z) = E+(Ω,K; z) +E−(Ω,K; z), (2)

E±(Ω,K; z) = E±(Ω,K)e±iwz, (3)

E±(Ω,K) = ŝEs
±(Ω,K) + p̂±E

p±
± (Ω,K), (4)

where a subscript ± is now used to denote the ±ẑ direction in which the field is either

propagating or suffering evanescent decay with wavenumber component ±w along the axial

direction. We refer generally to the + (−) component as the upward (downward) propagating

wave. For example, the distribution representing an upward propagating plane wave of

complex amplitude EΩ◦,K◦

+ at z = z◦ would be represented by

E+(Ω,K; z◦) = E
Ω◦,K◦

+ δ(Ω− Ω◦)δ(K −K◦), (5)

where δ(x) denotes the Dirac delta distribution. The wave and polarization vectors are

sketched on Fig. 1 for a situation in which they are real. More generally, in an isotropic
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medium, they are given by:

ν± ≡ K ± wẑ, (6)

w ≡
(

Ω̃2n2 −K2
)1/2

, (7)

ŝ ≡ K̂ × ẑ, (8)

p̂± ≡ ν−1
(

Kẑ ∓ wK̂
)

, (9)

where ν± = νν̂± is the wave vector with the wave number ν = Ω̃n, Ω̃ ≡ Ω/c with c the

speed of light, n is the (in general complex) index of refraction, K = KK̂ is the transverse

component of the wave vector, and square roots of complex numbers z are defined such that

Im
√
z ≥ 0, and Re

√
z ≥ 0 if Im

√
z = 0. Throughout we will use subscripts, such as in wi

and p̂i±, to denote the indicated parameters in a medium of refractive index ni. It should be

noted that, for an upward propagating plane wave, given Ω and K, one knows the direction

ν̂i± of the propagation vector through Eqs. (6) and (7), and that the direction depends on

the index of refraction of the medium ni.

3. Propagation and Transformations

In realistic experimental geometries, THz pulses propagate through air, dielectric media,

and collimating optics. Since we are interested in the linear propagation of THz pulses, we

can describe the transformation of a single plane wave through such media and optics, and

reconstruct the transformation of a THz pulse from a superposition of plane waves. We

now introduce the necessary transformations of plane waves through dielectric media and

through lenses.

A. Free space and dielectrics

In vacuum, dielectric, or any layered media where the interfaces are parallel to the xy plane,

a plane wave always remains a plane wave or a sum of plane waves with the same wave vector
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component K. The propagation of the fields is facilitated by the use of transfer matrices.

A host of conventions are in common use16. For positive frequency Ω, we find it convenient

to define the matrices with respect to formal vectors ei(z) of the form:

ei(z) =









E+(Ω,K)eiwiz

E−(Ω,K)e−iwiz









, (10)

where we consider a medium with an index of refraction ni. Here E±(Ω,K) identifies either

Es
±(Ω,K) or Ep±

± (Ω,K). Separate formal vectors ei(z) are used for ŝ- and p̂-polarized light,

since the effect of interfaces on the propagation of those two polarizations can be treated

independently. The transfer matrix Mi(z) that transforms the formal vector of Eq. (10)

upon propagation in a uniform isotropic medium is:

Mi(z) =









eiwiz 0

0 e−iwiz









, (11)

i.e., ei(z1) = Mi(z1− z2)ei(z2) if z1 and z2 are in the same medium. The matrix Mij for the

passage through an interface separating media i and j takes the same form for either ŝ- or

p̂-polarized radiation; it is:

Mij =
1

tij









1 rij

rij 1









, (12)

i.e., ei(z
+
◦ ) = Mijej(z

−
◦ ) if medium i exists at z > z◦ and medium j at z < z◦, where the

Fresnel coefficients for ŝ and p̂ polarizations are:

rpij =
win

2
j − wjn

2
i

win2j + wjn2i
, rsij =

wi − wj

wi + wj

, (13)

tpij =
2ninjwi

win2j + wjn2i
, tsij =

2wi

wi + wj

. (14)

Now that basic propagation in dielectric media has been described, we shall examine the

case where a lens is in the path of the beam.
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B. Thin Lens

If the refractive index of a lens is not too large and if the lens is not too small, a good

approximation of the effect of the lens on a beam of light is achieved by modelling it as a

phase mask locally affecting each ray that propagates through it17. Consider first a wave

distribution incident from z < do with Fourier spectrum E+(Ω,K; d−o ) = E
Ω◦,K◦

+ δ(Ω −

Ω◦)δ(K −K◦) at z = d−o on a parabolic lens of total thickness DL, width 2L, radius of

curvature R̃ = R◦ and index of refraction n, as shown on Fig. 2. Recall this represents a

plane wave with transverse wave vector K◦, frequency Ω◦, and vector amplitude EΩ◦,K◦

+ .

The thickness of the lens as a function of radial distance is dlens (R) = DL−R2/2R̃ if R < L

and 0 if R > L, with a corresponding distance in vacuum dvac (R) = R2/2R̃ if R < L and

DL if R > L. Hence, within the usual approximations17, at z = do + DL, the input plane

wave has acquired a phase as a function of radial distance R and is now described by:

E(R+ (do +DL)ẑ, t) = E
Ω◦,K◦

+ eiwvacdvac(R)+iwlensdlens(R)+iK◦·R−iΩ◦t + c.c. (15)

with wlens (wvac) being the z-component of the wave vector inside (outside) the lens material.

Reflections from any of the interfaces as well as polarization dependent refraction effects are

neglected. The output wave is clearly no longer a plane wave because of the R-dependence

imprinted on its phase. Thus, at z = do + DL, an incident plane wave of transverse wave

vector K◦ has become a distribution of plane waves E+ (Ω,K ′; do +DL):

E(R+ (do +DL)ẑ, t) =

∫ ∞

o

dΩ

2π

∫

dK ′

(2π)2
E+ (Ω,K ′; do +DL) e

iK′·R−iΩt + c.c. (16)

with

E(R+ (do +DL)ẑ, t) =















E
Ω◦,K◦

+ e−i∆wR
2/2R̃+iwlensDL+iK◦·R−iΩ◦t + c.c. for R < L

E
Ω◦,K◦

+ eiwvacDL+iK◦·R−iΩ◦t + c.c. for R > L,

(17)
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where ∆w = wlens −wvac. One easily extracts the distribution E+ (Ω,K ′; do +DL) with an

inverse Fourier transform of Eqs (15) and (16):

E+ (Ω,K ′; do +DL) = E
Ω◦,K◦

+ δ(Ω− Ω◦)

{

eiwlensDL

∫

R<L

dRei(K◦−K
′)·R−i∆wR2/2R̃

+eiwvacDL

∫

R>L

dRei(K◦−K
′)·R

}

. (18)

As can be seen from Eq. (18), a single plane wave will exhibit diffraction rings after

it has propagated through the lens due to the effect of the edge of the lens. Similarly,

superpositions of plane waves that result in spatial profiles larger than the lens itself will

not be properly focussed or collimated and will therefore be attenuated. We can simplify

the mathematical expressions and keep essentially the same attenuation effect as Eq. (18)

if, instead of a finite lens of half-width L, a Gaussian aperture (or soft aperture) of 1/e half

width
√
2L (in amplitude) is assumed. The width of the soft aperture is defined such that

the energy of a plane wave after the lens is the same as what it would be were it a hard

aperture. One can easily show that Eq. (15) with a complex radius of curvature

1

R̃
=

1

R◦

− i

∆wL2
, (19)

represents a Gaussian aperture of half width
√
2L, with R◦ the real radius of curvature of

the lens. Using the shorthand notation

K2
L =

2∆w

R◦

− 2i

L2
, (20)

equation (18) can then be approximated by:

E+ (Ω,K ′; do +DL) ≈ E
Ω◦,K◦

+ δ(Ω− Ω◦)e
i∆wDL

∫

dRei(K◦−K
′)·Re−i

R2K2
L

4 , (21)

=
4πi

K2
L

E
Ω◦,K◦

+ δ(Ω− Ω◦)e
i
|K◦−K

′|2

K2
L

+i∆wDL

, (22)
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where the integral has been performed using the identity18:

∫ 2π

0

dφeimφeix cosφ = 2πimJm(x), (23)

with Jm(x) the Bessel function of order m, as well as

∫ ∞

0

R dR eiaR
2

J0(bR) =
i

2a
e
−ib2

4a . (24)

If a distribution of waves E+ (Ω,K; d−o ) is incident on the lens, the resulting distribution

behind the lens is obtained by superposition:

E+

(

Ω,K ′; d+o
)

=
4πi

K2
L

∫

dK

(2π)2
E+

(

Ω,K; d−o
)

e
i
|K−K

′|2

K2
L , (25)

where we have taken the thin lens limit whereDL → 0+. Equations (20) and (25) can be used

to implement the lens transformation numerically. However, it will be shown in section 5 that

the transformation corresponding to a common experimental geometry, where a Gaussian

beam is collimated and refocused, can be treated analytically.

4. Sources, Green Function and Geometry

Although we have described the propagation of THz radiation in dielectric media and lenses,

we have not discussed the generation of the radiation itself. From standard electromagnetism

theory, it is known that electromagnetic fields are radiated from oscillating currents. With

any current density J (r, t), we can associate a polarization potential (or density) according

to J (r, t) =
∂P(r, t)

∂t
. Obtaining the radiated electric field for a given polarization density

P(r, t) is a boundary condition problem and depends on the geometry of the system under

study. For instance, if the source P(r, t) is embedded in a dielectric medium with interfaces

to other media, there will be multiple Fresnel reflections of the generated waves that will

interfere inside and outside the dielectric material and affect the resulting radiation spectrum
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and profile. If the polarization source is described in terms of P (Ω,K; z) such that:

P(r, t) =

∫ ∞

0

dΩ

2π

∫

dK

(2π)2
P (Ω,K; z)eiK·Re−iΩt + c.c., (26)

the radiated field is obtained in general from the following Green function integral:

E(Ω,K; z) =

∫

dz′
↔

G (Ω,K; z − z′) · P (Ω,K; z′). (27)

In an infinite medium of index n1, the Green function, in “MKS units”, is15:

↔

G (Ω,K; z) =
iΩ̃2

2ε◦w1

(ŝŝ+ p̂1+p̂1+)θ(z)e
iw1z

+
iΩ̃2

2ε◦w1

(ŝŝ+ p̂1−p̂1−)θ(−z)e−iw1z

− 1

n21ε◦
ẑẑδ(z), (28)

with the Heaviside function θ(z) = 1, 0 for z > 0, < 0 and ε◦ the permittivity of free

space. The right hand side of Eq. (28) has terms representing the upward (eiw1z) and

downward (e−iw1z) propagating (or evanescent) waves originating from a polarization density

P (Ω,K; z′) at z′ for both ŝ and p̂1± polarizations, as well as a local term that will not be

relevant for this work and that has been discussed earlier15. For an arbitrary geometry

with a source embedded in a dielectric, the results from section 3 are used to obtain the

Green function for any polarization source embedded in any layered dielectric structure.

A common geometry is shown in Fig. 3, where two semi-infinite dielectric materials with

indices of refraction n1 and n2 (which can be frequency-dependent) are on either side of a

third material with index of refraction n3 and thickness D. When the polarization source is

contained in medium 3, the expression for the upward propagating radiation in medium 1

for z > 0 is given by15:

E+ (Ω,K; z) =
iΩ̃2

2ε◦w3

∑

q̂

Cqeiw1z
[

q̂1+q̂3+ ·
∫ 0

−D

dz′e−iw3z
′

P (Ω,K; z′)

+ rq32e
2iw3Dq̂1+q̂3− ·

∫ 0

−D

dz′eiw3z
′

P (Ω,K; z′)

]

(29)
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which is expressed as a sum over polarization states q̂ = {ŝ, p̂} in medium i, where ŝ+ =

ŝ− ≡ ŝ. The Fabry-Perot term for ŝ and p̂ polarizations is:

Cq = tq31
1− rq32r

q
31e

i2w3D
, (30)

where tqij and rqij are the Fresnel coefficients for that polarization. At any point, the full

electric field in space and time is obtained by applying a Fourier transform back into real

time t and real space r. The full broadband field can be written explicitly from Eq. (1) and

its explicit calculation for different geometries and sources is the object of the next section.

Expressions for the calculation of the radiation profile, using Eq. (1) together with (27)

and the appropriate Green function, can be simplified when what is wanted is the temporal

profile far from the polarization source P (Ω,K; z). To that end, it is useful to rewrite

expansions of the form (1) involving E+ (Ω,K; z) as:

E(r, t) =

∫ ∞

0

dΩ

2π

∫

idK

2πw
e+(Ω,K)eiwzeiK·R−iΩt + c.c., (31)

where

e+ (Ω,K) eiwz = − iw
2π

E+ (Ω,K; z) . (32)

The far field limit, as r →∞ with z > 0 and r̂ = r/r fixed, is19:

E(r, t) ∼
∫ ∞

0

dΩ

2π
e+(Ω, K̄)

eiΩ̃nr−iΩt

r
+ c.c., (33)

where the value of w and n are calculated in the medium where the wave is propagating

in the far field, and K̄ = νr̂ · (
↔
U − ẑẑ) with

↔
U the unit tensor . Clearly, the Fourier

component with wave vector K̄ dominates for a given r̂ and frequency Ω. For instance, if

one looks at the beam at a far distance z in the direction of the ẑ axis, then r̂ = ẑ, and

K̄ = νẑ · (
↔
U − ẑẑ) = 0.
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5. Examples

We first discuss how to calculate the temporal profile for an infinite medium with Eq. (1).

The integral over Ω is a simple Fourier transform, but the integral over K in Eq. (1) is

complicated because of the vector nature ofK. The productK ·R, the arbitrary distribution

P (Ω,K; z), and the implicit dependence of ŝ and p̂± on K (see Eqs 8 and 9) make the

integral over the orientation of K non-trivial, except for the the far field case where Eq. (33)

can be used. Moreover, in general, the radiated field E(r, t) has components along all three

Cartesian coordinates even if P (Ω,K; z) is linearly polarized. Therefore, before explicitly

integrating Eq. (1), it is useful to make appropriate assumptions on the polarization source

P (Ω,K; z), as well as to restrict ourselves to the component of interest of the radiated field.

As our examples, we calculate the temporal profile of the electric field component polar-

ized along x̂, at R = 0 (i.e., on the ẑ axis) for the upward propagating wave originating

from a polarization source P(r, t). Also, we take the polarization source P(r, t) to be cylin-

drically symmetric and linearly polarized along x̂ thereby making the polarization density

simple to describe and the integrals easy to evaluate. These approximations correspond

to most experimental situations in the literature today, and illustrate all features of the

formalism.

To illustrate the results with an analytically simple case, we first consider a cylindrically

symmetric sheet of polarization

P (Ω,K; z) = x̂P (Ω, K)δ(z) (34)

embedded in a uniform medium of index of refraction n1.
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A. Asymptotic expression for far field

A simple expression for the far field temporal profile from the polarization sheet (34) can be

obtained using the Green function (28) for an infinite medium in the general expression for

the field (27), and substituting the field in the far field limit (33). For an observation point

on the ẑ axis (i.e., r = zẑ and therefore K̄ = 0), the x̂ component of the field is given by:

x̂ · E(zẑ, t) ∼ 1

4πε◦z

∫ ∞

0

dΩ

2π
Ω̃2P (Ω, 0)eiΩ̃n1z−iΩt + c.c. (35)

The results for a polarization with a Gaussian spectrum and a Gaussian spatial profile

P (Ω, K) =
4π3/2

σΩσ2K
P◦e

−Ω2/σ2Ωe−K
2/σ2K (36)

are shown on Fig. 4 for z = 50 mm in local time t′ = t − zRe(n1)/c, where Re(n1) is the

real part of the index of refraction and P◦ the peak polarization density. The far field profile

follows the time derivative of the current
∂J

∂t
=

∂2P

∂t2
, as can be seen from the figure.

Alternatively, this can be seen directly from Eq. (35), since the temporal Fourier transform

of the time derivative of the current is proportional to Ω2P (Ω, K).

B. Near and far fields

In general, the detector must be sufficiently far from the source for the asymptotic limit (35)

to be adequate. If this is not the case, then one must integrate Eq. (1). The integral over

K is written out as a 2D integral in cylindrical coordinates with K = |K| and φ the angle

between the x̂ axis and the vector K. All dyadics of the form âb̂, where â and b̂ are ŝ or

one of the p̂’s, are expanded in the form:

âb̂ =
∑

m

f
↔

m

(

âb̂
)

e−imφ (37)

where only a finite number of coefficients f
↔

m

(

âb̂
)

survive (m = ±2,±1, 0). These are easily

determined and are given in Appendix A. The integral over φ can then be performed analyti-

cally, whereas the remaining integrals over Ω andK are performed numerically. This reduces
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considerably both the computing time and the memory requirements for the computation,

making the results developed here very easily handled by a modest personal computer.

To obtain the x component of the upward propagating field in the case of a polarization

sheet (34) in an infinite medium, Eqs (27) and (28) are used:

x̂ ·E+(Ω,K; z) =
iΩ̃2

2ε◦w1

(

∑

m

[

f
↔

m (ŝŝ) + f
↔

m (p̂1+p̂1+)
]

e−imφ

)

· x̂eiw1zP (Ω, K). (38)

The x̂ component of E+(Ω,K; z) follows from the use of the f
↔

m given in Appendix A:

x̂ ·E+(Ω,K; z) =
iΩ̃2

2ε◦w1

(

1

2
− 1

2
cos 2φ+

w2
1

2ν21
+

w2
1

2ν21
cos 2φ

)

eiw1zP (Ω, K). (39)

To obtain the temporal profile of the THz field, we substitute Eq (39) in Eq. (1) and integrate

over φ, Ω, and K; the first integral is done analytically. For an observation point at r = zẑ

(i.e., on axis), we obtain:

x̂ · E(zẑ, t) =
i

2ε◦

∫ ∞

0

dΩ

2π
Ω̃2e−iΩt

∫ ∞

0

KdK

2π

(

1

2
+

w2
1

2ν21

)

w−1
1 eiw1zP (Ω, K). (40)

When a broad range of wave vectors K is present, w1 can decrease to a very small value

or even become imaginary. If n1 is real, the divergence w−1
1 is purely formal since it can be

integrated over and can easily be handled analytically. In practice, however, any residual

absorption in medium 1 will ensure that w1 never vanishes (see Eq. 7). The integrand is

then strongly peaked but can be integrated numerically with appropriate sampling. The

integrand is sampled at different values of K [i] where w1(Ω, K [i+ 1]) − w1(Ω, K [i]) is

constant and equal to ∆, as long as the corresponding change in K [i+ 1]−K [i] is smaller

than ∆. The sampling parameter ∆ is decreased appropriately until the calculated results

do not change. Results for a polarization of the type of Eq. (36) are shown on Fig. 5 in

local time t′ = t− zRe(n1)/c and at different z values. We see the onset of the asymptotic

solution Eq. (35) as the distance from the source is increased. The radiated field follows

14



the current or the time derivative of the polarization J =
∂P

∂t
close to the source but is

reshaped into the time derivative of the current density
∂J

∂t
=
∂2P

∂t2
in the far field, as was

obtained in Fig. 4.

6. Experimental geometries and sources

To extend the previous results to experimentally interesting geometries and polarization

sources is straightforward. The geometry of Fig. 3, often encountered in experiments, is

considered. For the purpose of example, we consider a linearly-polarized, cylindrically-

symmetric, optically-generated polarization source, as obtained from below band gap second-

order rectification6,14,20. The source substrate of thickness D = 100 µm is (110)-oriented

GaAs and is surrounded by air (i.e., n1 = n2 = 1), as shown on Fig. 3. The only non-

zero second-order susceptibility coefficients of GaAs are χ
(xyz)
2 = 100 pmV−1, where (xyz)

is any permutation of xyz. The frequency-dependent index of refraction n3(Ω) of GaAs is

obtained from experimental data21. The optical pump beam is assumed normally incident

from z < −D on the GaAs (medium 3). The spectrum of an optical pump beam centered

at ω◦ with a Gaussian spatial profile is described (see Eq. 3) by:

E+(ω,K)e−iω◦D/c =
4π3/2

σω◦σ
2
κ◦

Eω◦e
−(ω−ω◦)2/σ2ω◦e−|K|2/σ2κ◦ , (41)

with a positive center frequency of 2πcω−1
◦ = 1.55 µm, a spectral width of 2σ−1

ω◦ = 125 fs, and

a spot 1/e-width of 100 µm, giving 2σ−1
κ◦ = 100 µm with a peak intensity inside the crystal

of 2 |Eω◦ |2 n3/Z◦ = 5 GWcm−2 with Z◦ = 377 Ohms the vacuum impedance. Neglecting

diffraction of the optical pump beam, the following polarization density P (Ω,K; z) results:

P (Ω,K; z) = x̂P (Ω, K) e(in
g
ω◦ Ω̃−2αω◦ )(z+D), (42)
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with

P (Ω, K) = 2ε◦χ
eff
2 |Eω◦ |2

4π3/2

σω◦σ
2
κ◦

e−Ω
2/σ2Ωe−K

2/σ2K . (43)

Here, χeff2 = χ
(xyz)
2 /2 is the effective nonlinear susceptibility with the optical pump fields

polarized along ŷ (1̄10), σΩ =
√
2σω◦ and σK =

√
2σk◦ are the spectral widths in frequency

space Ω and transverse wave vector spaceK respectively, ngω◦ = 3.1 is the pump group index

and αω◦ is the field absorption coefficient at the pump frequency ω◦.

A. Asymptotic expression for far field

To obtain the far field radiation propagating in the positive ẑ direction in the medium 1, we

substitute the polarization (42) into the expression for the field (29) and use the result in

Eq. (32) to obtain:

e+ (Ω,K) =
Ω̃2

4πε◦

∑

q̂

Cq
[

q̂3+ ·
∫ 0

−D

dz′e−iw3z
′

P (Ω,K; z′)

+ rq32e
2iw3Dq̂3− ·

∫ 0

−D

dz′eiw3z
′

P (Ω,K; z′)

]

, (44)

which we substitute into the general expression for the far field (33). The integral over z ′

can be performed analytically and written as:

∫

dz′e∓iw3z
′

P (Ω,K; z′) = x̂P (Ω, K)

∫ 0

−D

dz′e(in
g
ω◦ Ω̃−2αω◦ )(z+D)e∓iw3z

′

(45)

≡ x̂P (Ω, K)L±(Ω, K), (46)

where L±(Ω, K) is the effective interaction length for the upward- and downward-

propagating waves:

L±(Ω, K) =

[

ein
g
ω◦ Ω̃D−2αω◦D − e±iw3D

∓iw3 + ingω◦Ω̃− 2αω◦

]

(47)

and grows in magnitude as the fields approach the usual phase-matching condition. For an

observation point on the ẑ axis (i.e., r = zẑ and therefore K̄ = 0), the x̂ component of the
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temporal profile of the beam is:

x̂ · E(zẑ, t) ∼
∫

dΩ

2π

Ω̃2

4πε◦
CsP (Ω, 0)

[

L+(Ω, 0) + rs32e
2iw3DL−(Ω, 0)

] eiΩ̃nz−iΩt

z
+ c.c.,(48)

where we took x̂ · ŝ = 1 and x̂ · p̂ = 0 to lift the ambiguity of Eqs (8) and (9) at K̄ = 0. The

results are shown on Fig. 6 at z = 5 cm for the polarization source described by Eq. (42),

with the same parameters as before except for a larger bandwidth σΩ/2π = 3.8 THz. This

slightly overlaps the first phonon resonance at 8.5 THz in GaAs, which is implicitly included

via n3(Ω). Our results demonstrate how all the dispersive features of the source material

are included in the calculation. The inset shows the corresponding spectrum amplitude

where one can clearly see Fabry-Perot and phonon resonances, as well as the effects of the

frequency-dependent interaction length (which is zero at 6.1 THz).

B. Near and far fields

An approach similar to that used to calculate the near field for the polarization sheet in

the previous section is used here to calculate the near field temporal profile. Starting from

Eq. (29), the x̂ component of the field from both polarizations is:

x̂ ·E+ (Ω,K; z) =
iΩ̃2

2ε◦w3

eiw1z
∑

q̂

Cq
[
∫ 0

−D

dz′e−iw3z
′

x̂ · q̂1+q̂3+ · x̂P (Ω,K; z′)

+ rq32e
2iw3D

∫ 0

−D

dz′eiw3z
′

x̂ · q̂1+q̂3− · x̂P (Ω,K; z′)

]

. (49)

Using the results of Appendix A, x̂ · q̂1+q̂3+ · x̂ and x̂ · q̂1+q̂3− · x̂ are rewritten and we obtain

the equation for the field:

x̂ ·E+ (Ω,K; z) =
iΩ̃2

2ε◦w3

eiw1zP (Ω, K)

×
[

L+(Ω, K)

(

1

2
Cs − 1

2
Cs cos 2φ+

w1w3

2ν1ν3
Cp + w1w3

2ν1ν3
Cp cos 2φ

)

+ e2iw3DL−(Ω, K)

(

1

2
rs32Cs −

1

2
rs32Cs cos 2φ

−w1w3

2ν1ν3
rp32Cp −

w1w3

2ν1ν3
rp32Cp cos 2φ

)]

. (50)
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Finally, to obtain the total field, Eq. (1) is integrated over Ω and K with Eq. (50). The

integral over φ, the orientation of K, is performed analytically, leaving us with :

x̂ · E(zẑ, t) =

∫ ∞

0

dΩ

2π
e−iΩt

iΩ̃2

2ε◦

∫ ∞

0

KdK

2π
w−1
3 eiw1zP (Ω, K)

[(

1

2
Cs + w1w3

2ν1ν3
Cp
)

L+(Ω, K)

+ e2iw3D
(

1

2
Csrs32 −

w1w3

2ν1ν3
Cprp32

)

L−(Ω, K)

]

+ c.c. (51)

to integrate numerically. The integrand is strongly peaked as w3 approaches zero and sam-

pling of the function is done at different points K [i] corresponding to a constant separation

in w3, as explained previously. The on-axis temporal profile of the THz radiation from

below-band-gap optical rectification from a 100 µm substrate of GaAs is shown on Fig. 7.

Multiple pulse reflections separated by 2.3 ps (as expected from the thickness of the sub-

strate and its group index at THz frequencies) are observed. The pulses arising from the

multiple reflections are increasingly chirped because of the dispersion of GaAs and the fact

that the reflected pulses have travelled repeatedly through the sample.

C. Gaussian beam through finite size lens

We have shown in the previous sections how to calculate the near and far field temporal

profiles of a THz beam as it propagates exclusively through layered media. However, because

experimental THz radiation sources are often essentially point sources, diffraction is very

important and the THz radiation must be collimated with optics for experiments. The

dimensions of the optics are such that their finite clear aperture cannot collect all the

energy of low frequencies of the THz spectrum that have diffracted to a size larger than

the diameter of the collimating optics. Various experimental designs make use of off-axis

parabolic mirrors (with a typical diameter of 2.5 cm) to collimate and focus THz beams.

Their finite size has the effect of filtering out low frequencies while letting through the higher

frequencies. Also, most THz detection systems make use of a pair of matched mirrors with
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focal length f ′, set up far from the source and in such a way that the first one collimates

a THz point source and the second one focuses it. Within the usual approximations17, this

particular arrangement can be treated as a single optical element of focal length f = f ′/2,

with do = di = f ′ (see Fig. 8). We assume that these mirrors are adequately modelled by

finite-size thin lenses as is usually assumed in optics17 and it is therefore sufficient to study

the case of a beam going through a single lens replacing the mirrors. The transformation

of an arbitrary beam by the mirrors is then given by that of the lens in Eq. (25). This

section is an example calculation using the results of section 3B for the effect of finite-size

mirrors on the spectrum and temporal profile of THz beams. In general, the results of the

transformation depend on the spatial profile and radius of curvature of the beam at the

entrance of the lens and is an imaging problem beyond the scope of this work. Therefore,

we make the simplifying assumption that the input spatial profile is Gaussian, as is often

the case experimentally.

We start with a linearly polarized Gaussian beam E+ (Ω,K) =

4πσ−2K E+ (Ω) exp [−K2/σ2K ] at z = 0 with σK the (real) Gaussian width of the transverse

wave vector distribution and E+(Ω) = x̂E+(Ω) an arbitrary spectral density. At a distance

do from its waist is a lens of focal length f = R◦/(n − 1), and we are interested in

calculating the field at a distance di behind the lens (see Fig. 9). Using the paraxial wave

approximation22, the field immediately in front of the lens can be written as:

E+

(

Ω,K; d−o
)

= E+ (Ω,K) eiΩ̃do−i
K2do
2Ω̃ . (52)

A Gaussian spatial profile can therefore be written as:

E+

(

Ω,K; d−o
)

=
4π

σ2K
E+ (Ω) eiΩ̃doe

− K2

σ2o(do) (53)
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with

1

σ2o(do)
=

1

σ2K
+ i

do

2Ω̃
. (54)

The lens transformation of Eq. (25) is performed with an input wave distribution of the

form of Eq. (53) with the help of identities (23) and (24). We obtain the field immediately

behind the lens with:

E+

(

Ω,K; d+o
)

=
4π

σ2K

σ2o(do)

σ2o(do) + iK2
L

E+(Ω)e
iΩ̃doe

− K2

σ2o(do)+iK
2
L . (55)

The propagation of the field by a distance di is then obtained simply by multiplying by eiwdi

(see Eq. (11)):

E+ (Ω,K; do + di) =
4π

σ2K

σ2o(do)

σ2i (do, 0)
E+(Ω)e

iΩ̃(do+di)e
− K2

σ2
i
(do,di) , (56)

where we defined for simplicity:

1

σ2i (do, di)
=

1

σ2o(do) + iK2
L

+
idi

2Ω̃
. (57)

When calculating the total field, for instance with Eq. (1), on the z axis (i.e., R = 0),

and with polarization x̂, the relative attenuation of frequency component Ω of the field at

z = do + di compared to the field at z = 0 is given by:

F full(Ω, do, di) =
x̂ ·
∫

dK
(2π)2

E+ (Ω,K; do + di)

x̂ ·
∫

dK
(2π)2

E+ (Ω,K; 0)
=
σ2o(do)

σ2o(0)

σ2i (do, di)

σ2i (do, 0)
(58)

and its magnitude is shown on Fig. 10 for σ−1
K = 100 µm, L = 2.5 cm, f = 2.5 cm, and

do = di = 5 cm, corresponding to typical THz parameters. The lens acts as a low frequency

filter. Low frequencies diffract more than do high frequencies and, therefore, their Gaussian

spatial profile at the lens is wider than the lens itself and does not get fully collimated.

Higher frequencies, on the other hand, do not diffract as much and are almost entirely

collimated. This is entirely expected and can be understood intuitively with the following
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physical argument. From previous results, we know that the far field in a given direction

is related to a single transverse wave vector K. Therefore, the finite clear aperture of the

lens can be seen as collimating all waves that make an angle with the ẑ axis smaller than

θco, with tan θco = L/do ≈ |Kco| /Ω̃ (see Fig. 9). Therefore, any plane wave component

E+(Ω,K) with |K| < |Kco| goes through the collimating lens, whereas a component with

|K| > |Kco| does not. Since we are assuming a Gaussian spatial profile, the filter function

can be approximated by:

Fapprox(Ω) = erf2

(

Ω̃L

fσK

)

. (59)

This is also plotted in Fig. 10 for σ−1
K = 100 µm, L = 2.5 cm, f = 2.5 cm and do = di = 5 cm.

The effect of a collimating lens placed in the far field is therefore to limit the contribution to

the profile of transverse wave vectors |K| < LΩ̃/f . The beam after collimation and focusing

can be obtained by:

E+ (Ω,K; do + di) = E+

(

Ω,K; d−o
)

Fapprox(Ω)ei
2fK2

Ω̃ eiwdi . (60)

The filter function F approx(Ω) is for the finite size effect of the mirror, ei
2fK2

Ω̃ is the phase

curvature introduced by an infinite lens with a focal length equivalent to that of the pair

of matched mirrors, and eiwdi is a propagation factor from the lens to the focal plane.

At Ω = 0, the limit of Eq. (60) is zero. Experimental results of THz radiation that is

collimated and refocused can be modelled very well with the combined use of near field

expressions and filtering functions from collimating, focusing, and propagating the beam.

For example, the calculation of THz radiation from optical rectification in a 30 µm ZnTe

crystal detected in a 27 µm ZnTe crystal (similar to the experimental results reported by Han

and Zhang23) is shown on Fig. 11. The calculation makes use of Eq. (50) with the additional

multiplication by filter function Eq. (60). The detection via electro-optic sampling has been
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described elsewhere24 and is an additional filter function. The full dispersion curve of ZnTe is

obtained from Leitenstorfer et al.25 and is used in the calculation of the index of refraction

n3(Ω) at THz frequency, as well as for the electro-optic detection filter function. These

calculations agree very well with published results23. The exact temporal profile is strongly

dependent on the frequency-dependent index of ZnTe, and small temporal features are not

easily reproduced when strong phonon resonances are present, as is the case here.

7. Conclusions

Plane waves with polarization basis ŝ and p̂ are ideal for describing the linear propagation of

electromagnetic radiation, since these two polarizations can be treated independently even

in the presence of layered structures. In an infinite medium, the Green function relating

the radiated field to the source is known and the radiated electric field is obtained by inte-

gration over all plane waves of all frequencies and directions. In the far field, it is possible

to simplify these integrals greatly, since only the plane waves having wave vectors in the

direction of the observation point contribute to the field. In the near field, it is possible

to simplify the expressions for the field if one makes the usual assumptions that are easily

met in practice, such as linear polarization and Gaussian spatial profiles. The remaining

integrals are then easily implemented numerically. The generality of the method and its

applicability to experimental situations is demonstrated when thin film transfer matrices

are used in conjunction with the boundary conditions (i.e., incoming and outgoing waves)

to obtain the Green function for a polarization embedded in a three-layer structure. This

Green function is used to calculate the temporal profiles of the far and near field radiation

for a spatially Gaussian polarization source (see Eqs (44) and (51)), and includes the dis-

persion of the source material, the multiple reflections in the material, and the polarization

dependence of the transmissions and reflections at interfaces. Finally, a pair of mirrors,
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often encountered experimentally to collimate and refocus a THz pulse, is shown to cut off

low frequencies but to let through higher frequencies mostly unaltered. The cutoff frequency

depends on the focal length, the size of the mirror, and the size of the THz source. A com-

plete modelling of experiments is possible when the details of the frequency response of the

THz detection system are known. The dispersive properties of various THz measurement

schemes have been studied and compared elsewhere8,24–26. One example of experimental

data from the literature23 has been shown to be very well modeled by the formalism pre-

sented in this publication. The straightforward application to experimental situations of the

model presented here allows one to extract details about the THz generation process, as has

been demonstrated elsewhere by our group14,27. A computer implementation of the results

for calculating the various THz temporal profiles presented in the present paper is available

online28.
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Appendix A: Angular expansion of the polarization tensors

The different Fourier decompositions
∑

m

↔

fm e−imφ of the polarization tensors are calcu-

lated. For each frequency Ω and transverse wave vector K, ŝ and p̂i± polarization vectors

as well as K̂ are defined in medium i as:

K̂ = x̂ cosφ+ ŷ sinφ

ŝ = K̂ × ẑ = −ŷ cosφ+ x̂ sinφ

p̂i± =
1

νi

(

Kẑ ∓ wiK̂
)

=
K

νi
ẑ ∓ wi

νi
x̂ cosφ∓ wi

νi
ŷ sinφ
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1. Non-vanishing f
↔

m (ŝŝ)

↔

f 0 (ŝŝ) =
1

2
(x̂x̂+ ŷŷ)

↔

f +2 (ŝŝ) =
1

2

(

−1

2
(x̂x̂− ŷŷ)

)

+
i

2

(

−1

2
(x̂ŷ + ŷx̂)

)

↔

f −2 (ŝŝ) =
1

2

(

−1

2
(x̂x̂− ŷŷ)

)

− i

2

(

−1

2
(x̂ŷ + ŷx̂)

)

2. Non-vanishing f
↔

m (p̂±ip̂±j)

↔

f 0 (p̂±ip̂±j) =
K2

νiνj
ẑẑ +

wiwj

2νiνj
(x̂x̂+ ŷŷ)

↔

f +1 (p̂±ip̂±j) = ∓1

2

(

Kwj

νiνj
ẑx̂+

Kwi

νiνj
x̂ẑ

)

∓ i

2

(

Kwj

νiνj
ẑŷ +

Kwi

νiνj
ŷẑ

)

↔

f +1 (p̂±ip̂±j) = ∓1

2

(

Kwj

νiνj
ẑx̂+

Kwi

νiνj
x̂ẑ

)

± i

2

(

Kwj

νiνj
ẑŷ +

Kwi

νiνj
ŷẑ

)

↔

f +2 (p̂±ip̂±j) =
1

2

(

wiwj

2νiνj
(x̂x̂− ŷŷ)

)

+
i

2

(

wiwj

2νiνj
(x̂ŷ + ŷx̂)

)

↔

f −2 (p̂±ip̂±j) =
1

2

(

wiwj

2νiνj
(x̂x̂− ŷŷ)

)

− i

2

(

wiwj

2νiνj
(x̂ŷ + ŷx̂)

)

3. Non-vanishing f
↔

m (p̂±ip̂∓j)

↔

f 0 (p̂±ip̂∓j) =
K2

νiνj
ẑẑ − wiwj

2νiνj
(x̂x̂+ ŷŷ)

↔

f +1 (p̂±ip̂∓j) =
1

2

(

Kwj

νiνj
ẑx̂∓ Kwi

νiνj
x̂ẑ

)

+
i

2

(

Kwj

νiνj
ẑŷ ∓ Kwi

νiνj
ŷẑ

)

↔

f −1 (p̂±ip̂∓j) =
1

2

(

Kwj

νiνj
ẑx̂∓ Kwi

νiνj
x̂ẑ

)

− i

2

(

Kwj

νiνj
ẑŷ ∓ Kwi

νiνj
ŷẑ

)

↔

f +2 (p̂±ip̂∓j) =
1

2

(

−wiwj

2νiνj
(x̂x̂− ŷŷ)

)

+
i

2

(

wiwj

2νiνj
(x̂ŷ + ŷx̂)

)

↔

f −2 (p̂±ip̂∓j) =
1

2

(

−wiwj

2νiνj
(x̂x̂− ŷŷ)

)

− i

2

(

wiwj

2νiνj
(x̂ŷ + ŷx̂)

)
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List of Figure Captions

Fig. 1. Coordinate systems used in the calculations, sketched in the case where ŝ, p̂± and ν±

are real. a) Axial direction ẑ, wave vector componentK, and polarization ŝ. b) Polarization

vectors ŝ and p̂± for plane wave directions ν̂±. c) Vector decomposition of plane wave vector

ν± into its transverse (K) and axial (±wẑ) components.

Fig. 2. Lens geometry used in calculation. The upward propagating beam is incident

from z < d◦.

Fig. 3. Three layer geometry with polarization source in medium with index n3.

Fig. 4. Temporal profile showing the far field at z = 50 mm for 2πσ−1
Ω = 200 fs, 2πσ−1

K =

1 mm in a medium with n21 = 10 + i10−4, similar to dispersionless GaAs. The field follows

the second time derivative of the polarization envelope function.

Fig. 5. Temporal profile showing the transition from near to far field for common THz

parameters with 2πσ−1
Ω = 200 fs, 2πσ−1

K = 1 mm in a medium with a dielectric constant

n21 = 10 + i10−4 similar to dispersionless GaAs. Profile at top is at z = 0 mm, center is at

z = 8 mm and bottom is at z = 50 mm. The arbitrary units are the same on all plots, and

are the same as those used on Fig. 4.

Fig. 6. Temporal profile of THz radiation from below band gap optical rectification with

σΩ/2π = 3.8 THz at z = 5 cm. Inset: spectrum amplitude.

Fig. 7. Temporal profile of THz radiation from below band gap optical rectification with

σΩ/2π= 1 THz near and far from the source.

Fig. 8. Two lenses of focal lengths f ′ used to collimate and refocus a point source located

at the focus of one of the lens are equivalent to a single lens with a focal length twice as

short f = f ′/2; do (di): distance between object (image) plane and lens.

Fig. 9. Diffraction of a Gaussian beam originating from z = 0, and transformation by a

27



lens at z = do. The field at z = do + di is obtained. The inset shows how to estimate the

cut-off frequency when the lens is far from a point source with tan θco = L/do ≈ |Kco| /Ω̃.

Fig. 10. Magnitude of filter function F full (solid line) and F approx (dotted line) for

σ−1K = 100 µm, L = 2.5 cm, f = 2.5 cm and do = di = 5 cm.

Fig. 11. Calculation of the temporal profile of THz radiation from below band gap

optical rectification in a 27 µm thick ZnTe crystal detection in a 30 µm ZnTe crystal. These

calculations agree very well with published results23.
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ŝ

p̂

ν̂-

+

-

+

ν+

K

νν-

a) b) c)
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Fig. 1. Coordinate systems used in the calculations, sketched in the case where ŝ, p̂± and ν±

are real. a) Axial direction ẑ, wave vector componentK, and polarization ŝ. b) Polarization

vectors ŝ and p̂± for plane wave directions ν̂±. c) Vector decomposition of plane wave vector

ν± into its transverse (K) and axial (±wẑ) components.
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Fig. 2. Lens geometry used in calculation. The upward propagating beam is incident from

z < d◦.
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Fig. 3. Three layer geometry with polarization source in medium with index n3.
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Fig. 4. Temporal profile showing the far field at z = 50 mm for 2πσ−1
Ω = 200 fs, 2πσ−1

K =

1 mm in a medium with n21 = 10 + i10−4, similar to dispersionless GaAs. The field follows

the second time derivative of the polarization envelope function.
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Fig. 5. Temporal profile showing the transition from near to far field for common THz

parameters with 2πσ−1
Ω = 200 fs, 2πσ−1

K = 1 mm in a medium with a dielectric constant

n21 = 10 + i10−4 similar to dispersionless GaAs. Profile at top is at z = 0 mm, center is at

z = 8 mm and bottom is at z = 50 mm. The arbitrary units are the same on all plots, and

are the same as those used on Fig. 4.
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Fig. 6. Temporal profile of THz radiation from below band gap optical rectification with

σΩ/2π = 3.8 THz at z = 5 cm. Inset: spectrum amplitude.
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Fig. 7. Temporal profile of THz radiation from below band gap optical rectification with

σΩ/2π= 1 THz near and far from the source.
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Fig. 8. Two lenses of focal lengths f ′ used to collimate and refocus a point source located at

the focus of one of the lens are equivalent to a single lens with a focal length twice as short

f = f ′/2; do (di): distance between object (image) plane and lens.
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Fig. 9. Diffraction of a Gaussian beam originating from z = 0, and transformation by a lens

at z = do. The field at z = do + di is obtained. The inset shows how to estimate the cut-off

frequency when the lens is far from a point source with tan θco = L/do ≈ |Kco| /Ω̃.
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Fig. 10. Magnitude of filter function F full (solid line) and F approx (dotted line) for σ−1
K =

100 µm, L = 2.5 cm, f = 2.5 cm and do = di = 5 cm.
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Fig. 11. Calculation of the temporal profile of THz radiation from below band gap optical

rectification in a 27 µm thick ZnTe crystal detection in a 30 µm ZnTe crystal. These

calculations agree very well with published results23.
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